Dev Ops for Data Science

We revisit the 2018 Microsoft Build in this episode, focusing on the latest ideas in DevOps. Kyle interviews Cloud Developer Advocates Damien Brady, Paige Bailey, and Donovan Brown to talk about DevOps and data science and databases. For a data scientist, what does it even mean to “build”? Packaging and deployment are things that a data scientist doesn't normally have to consider in their day-to-day work. The process of making an AI app is usually divided into two streams of work: data scientists building machine learning models and app developers building the application for end users to consume. DevOps includes all the parties involved in getting the application deployed and maintained and thinking about all the phases that follow and precede their part of the end solution. So what does DevOps mean for data science? Why should you adopt DevOps best practices? In the first half, Paige and Damian share their views on what DevOps for data science would look like and how it can be introduced to provide continuous integration, delivery, and deployment of data science models. In the second half, Donovan and Damian talk about the DevOps life cycle of putting a database under version control and carrying out deployments through a release pipeline.

Popout Listen on the new Podbay